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Abstract
Soliton solutions of multi-component SIT–NLS systems associated with
Hermitian symmetric spaces are obtained using the Bäcklund transformation.
Projectors of special form are introduced and solved to satisfy specific
conditions to obtain one-soliton solutions. The non-Abelian permutability
theorem is developed and used to obtain two-soliton solutions.

PACS numbers: 42.65.Tg, 05.45.Yv

1. Introduction

In the previous paper [1] (denoted as paper I in the following), we introduce multi-component
SIT–NLS (self-induced transparency and nonlinear Schrödinger) systems associated with
Hermitian symmetric spaces (HSS) G/K . In the HSS of G/K , the generators g of G are
composed as g = k ⊕ m with properties [2]

[k, k] ⊂ k, [k, m] ⊂ m, [m, m] ⊂ k, (1)

where k are the generators of K. See more details in papers explaining various HSS soliton
equations [3–8]. The Hermitiacity of the HSS implies that there exists a generator T ∈ k such
that

[T , k] = 0, [T , [T , m]] = −m. (2)

The soliton equation is described in terms of g ∈ G and E ∈ m as follows:

∂̄E = −∂2Ẽ + 1
2 [E, [E, Ẽ]] − [T , g−1T̄ g], (3)

with an auxiliary equation

∂g = gE, (4)

where Ẽ = [T ,E], T̄ = −αT with a constant α. In this paper, we treat cases of HSS in which
E takes a block form such as

E =
(

0 Em

−E
†
m 0

)
. (5)
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HSSs belonging to this category are AIII = SU(n + m)/(SU(n) × SU(m) × U(1)), CI =
Sp(n)/U(n), DIII = SO(2n)/U(n). For AIII HSS, Em is an n × m complex matrix, while
for CI, Em takes an n × n symmetric matrix. Em is an n × n antisymmetric matrix for the
DIII HSS. For these HSSs, T takes a form

T = i

2

(
In 0
0 −Im

)
, (6)

where In and Im are identity matrices of dimensions n and m, respectively.
The Bäcklund transformation (type-II BT) was introduced in paper I, which relates two

solutions f, g ∈ G as follows:

0 = g−1∂g − f −1∂f − [T , σ ],
(7)(

g−1∂̄g + ∂Ẽ − 1
2 [E, Ẽ]

)
σ − g−1T̄ g = σ

(
f −1∂̄f + ∂F̃ − 1

2 [F, F̃ ]
) − f −1T̄ f,

where σ = g−1Mf,M is a constant matrix satisfying [T ,M] = 0 and E = g−1∂g, F =
f −1∂f . It was shown in paper I that the BT gives a new solution g from a known solution f

such that both f, g satisfy the equation of motion. A similar form of BT was introduced in [9]
in the case of simple SIT systems.

Another form of the BT (type-I BT) was given in paper I, which takes the form

�g = (λ − σ)�f = (λ − g−1Mf )�f , (8)

where �g(�f ) is the solution of the corresponding Lax equation for g(f ). See more details
in paper I. The type-I BT will be used in obtaining the non-Abelian permutability theorem.
It is of the nonlinear superposition principle, which gives two-soliton solutions from known
one-soliton solutions. Notations used in this paper are those used in paper I.

In section 2, we introduce projectors and solve some specific conditions on them to obtain
one-soliton solutions. In section 3, we derive the non-Abelian permutability theorem using
the type-I BT and use it to calculate two-soliton solutions.

2. One-soliton solutions

2.1. Projectors in Hermitian symmetric spaces

To obtain one-soliton solutions using the type-II BT, we start with a trivial solution, f = 1.
We take σ = g−1M = −iδ(2 cos ηP − e−iη) and M = −iδ, where η and δ are two real BT
parameters, and P is a projector, P 2 = P . Then

g = 2 cos ηP − eiη. (9)

By inserting these expressions into the BT equation (7), we obtain the following equations
that the projector P satisfies

(1 − P)(∂ + λT )P = 0, (1 − P)

(
∂̄ − λ2T − 1

λ
T̄

)
P = 0, (10)

where λ = −iδ eiη. In deriving the second equation of (10), we use an identity
1
2 [E, Ẽ] − ∂Ẽ + Eσ = 1

2 [F, F̃ ] − ∂F̃ + σF, (11)

which is proved in the appendix of paper I.
The projector P should solve equation (10), and it is given by the following matrix:

P =
(

Pk e� sech � Pm sech � eiX

P
†
m sech � e−iX P̃k e−� sech �

)
, (12)
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where

X = −δ sin ηz − (δ2 cos 2η + α sin η/δ)z̄,
(13)

� = −δ cos ηz + (δ2 sin 2η + α cos η/δ)z̄.

For AIII HSS, Pf is an n × n constant matrix, Pm is an n × m constant matrix and P̃k is an
m × m constant matrix. They are n × n constant matrices for CI and DIII HSSs. Here Pk, P̃k

represent generators in k, and Pm represents generators in m.
By inserting the projector (12) into equation (10), we obtain the following relations:(

2P 2
k − Pk

)
e2� + 2PmP

†
m − Pk = 0, (2PkPm − Pm) e2� + 2PmP̃k − Pm = 0,(

2P
†
mPk − P

†
m

)
e2� + 2P̃kP

†
m − P

†
m = 0,

(
2P

†
mPm − P̃k

)
e2� + 2P̃ 2

k − P̃k = 0.
(14)

Equations (14) are solved by taking Pk, P̃k as

Pk = 2PmP †
m, P̃k = 2P †

mPm, (15)

while Pm satisfies

PmP †
mPm = 1

4Pm. (16)

Equation (16) is the specific condition for Pm to be solved to obtain one-soliton solutions.
Note that the projector property P 2 = P requires(

P 2
k e2� + PmP

†
m

)
sech � = Pk e�, (PkPm e� + PmP̃

†
k e−�) sech � = Pm,(

P̃ 2
k e−2� + P

†
mPm

)
sech � = P̃k e−�,

(
P

†
mPk e� + P̃kP

†
m e−�

)
sech � = P

†
m,

(17)

which also result in the relations in equations (15) and (16).

2.2. One-soliton of SU(4)

SU(2)×SU(2)×U(1)
HSS

The HSSs treated in this paper are those of paper I. The first one is AIII HSS, where the n×m

complex matrix Em is denoted as

Em =




ψ1,1 ψ1,2 · · · ψ1,m

ψ2,1 ψ2,2 ψ2,m

· · ·
ψn,1 ψn,2 · · · ψn,m


 . (18)

In this case, the equation of motion (3) becomes

∂̄ψi,j = −i∂2ψi,j − 2i
∑

l=1,n,k=1,m

ψ∗
l,kψl,jψi,k − α

∑
l=1,n

g∗
l,igl,n+j , i = 1, n, j = 1,m.

(19)

The auxiliary equation (4) becomes

∂gi,j = −
∑

l=1,m

gi,n+lψ
∗
j,l , i, j = 1, n

∂gi,n+j =
∑
l=1,n

gi,lψl,j , i = 1, n, j = 1,m.
(20)

Here, we treat the case n = m = 2. We first solve equation (16) to obtain the 2 × 2 matrix
Pm. There exist two types of solutions for equation (16) which are as follows.
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(1) Pm of the unitary type:

Pm = 1

2

(
cos θ eiu sin θ eiv

sin θ eiw −cos θ ei(v+w−u)

)
, (21)

where θ, u, v,w are arbitrary real parameters.
(2) Pm of the dyadic type:

Pm = 1

2

(
cos θ cos φ eiu cos θ sin φ eiv

sin θ cos φ eiw sin θ sin φ ei(v+w−u)

)
, (22)

where θ, φ, u, v,w are arbitrary real parameters.

Pm of the unitary type gives

g = 2 cos ηP − eiη = cos η sech �

(
A B

B∗ −A∗

)
, (23)

where

A =
(

sec η sinh(� − iη) 0

0 sec η sinh(� − iη)

)
,

(24)

B =
(

cos θ ei(X+u) sin θ ei(X+v)

sin θ ei(X+w) −cos θ ei(X+v+w−u)

)
.

Then, using E = g−1∂g and the first equation of (7), we can obtain

Em =
(

ψ1,1 ψ1,2

ψ2,1 ψ2,2

)
= δ cos η eiX sech �

(
cos θ eiu sin θ eiv

sin θ eiw −cos θ ei(v+w−u)

)
. (25)

It is now easy to check that ψ and g satisfy equations (19) and (20). Note that the last term
of equation (19), named as the generalized polarization in paper I, becomes (i = j = 1, for
example) ∑

l=1,n

g∗
l,1gl,n+1 = cos η cos θ sech2� sinh(� + iη) ei(X+u). (26)

Similar results can be obtained for Pm of the dyadic type, which we omit here.

2.3. One-soliton of Sp(2)

U(2)
HSS

For this HSS, the 2 × 2 matrix Em must be symmetric, and we denote it as

Em =
(

ψ1 ψ2

ψ2 ψ3

)
. (27)

Their equations of motion are given by

∂̄ψ1 = −i∂2ψ1 − 2i(|ψ1|2 + 2|ψ2|2)ψ1 − 2iψ2
2 ψ∗

3 − α(g∗
1,1g1,3 + g∗

2,1g2,3). (28)

Equations for ψi, i = 2, 3, are similarly given, see paper I for the explicit form. To obtain the
symmetric matrix Em in equation (27) using the BT, it is required that Pm must be symmetric,
too. Thus, Pm is given by equation (21) or (22) with the constraint that they must be symmetric.

(1) Pm of the unitary type: it is given by equation (21) with v = w. Solutions resulting from
it are given by equations (23) and (25) with v = w.

(2) Pm of the dyadic type: it is given by equation (22) with substitutions θ = φ → θ/2, v =
w → v:

Pm = 1

4

(
(1 + cos θ) eiu sin θ eiv

sin θ eiv (1 − cos θ) ei(2v−u)

)
. (29)
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Then

P = 1
2 sech �




cos2 θ
2 e� 1

2 sin θ ei(u−v)+� cos2 θ
2 ei(X+u) 1

2 sin θ ei(X+v)

1
2 sin θ ei(v−u)+� sin2 θ

2 e� 1
2 sin θ ei(X+v) sin2 θ

2 ei(X+2v−u)

cos2 θ
2 e−i(X+u) 1

2 sin θ e−i(X+v) cos2 θ
2 e−� 1

2 sin θ e−i(u−v)−�

1
2 sin θ e−i(X+v) sin2 θ

2 e−i(X+2v−u) 1
2 sin θ e−i(v−u)−� sin2 θ

2 e−�


,

(30)

and we can obtain g using g = 2 cos ηP − eiη. Using E = g−1∂g and the first equation of
(7), we can obtain

Em =
(

ψ1 ψ2

ψ2 ψ3

)
= δ cos η eiX sech �

(
cos2 θ

2 eiu 1
2 sin θ eiv

1
2 sin θ eiv sin2 θ

2 ei(2v−u)

)
. (31)

It can be explicitly checked that the obtained results for ψ and g satisfy the equation of motion
for ψ1 in (28), as well as those for ψi, i = 2, 3.

2.4. One-soliton of SO(8)

U(4)
HSS

For this HSS, the 4 × 4 matrix Em must be antisymmetric, and takes the following form:

Em =




0 ψ1 ψ3 ψ6

−ψ1 0 ψ2 ψ5

−ψ3 −ψ2 0 ψ4

−ψ6 −ψ5 −ψ4 0


 . (32)

Pm is also required to be antisymmetric such that

Pm = ei �
2




0 q1 eiB q3 eiA q6 e−iC

−q1 eiB 0 q2 eiC q5 e−iA

−q3 eiA −q2 eiC 0 q4 e−iB

−q6 e−iC −q5 e−iA −q4 e−iB 0


 , (33)

where the amplitudes qi, i = 1, 6, and the phase factors A,B,C,� are real numbers. When
we solve equation (16), we obtain

q2 =
q3q5q6 ± q4

√(
q2

4 + q2
6

)/
4 − (

q2
4 + q2

6 + q2
3

)(
q2

4 + q2
6 + q2

5

)
q2

4 + q2
6

,

(34)

q1 = −q4
q2

6

(
q2

3 + q2
4 + q2

5 + q2
6 − 1/4

)
+ 2q2q3q5q6 − q2

3q2
5(

q2
4 + q2

6

)
(q3q5 − q2q6)

,

where q3, q4, q5, q6 are arbitrary. A typical set of variables is q1 = 1/12, q2 = −√
79/24, q3 =

1/6, q4 = 1/4, q5 = 1/8, q6 = 0. Thus, Pm has eight parameters, q3, . . . , q6, A,B,C,�.
Em is given by Em = 2δ cos η eiX sech �Pm. It was explicitly checked that ψi, i = 1, 6, in
(32) satisfy equations of motions in equations (3) and (4) for DIII HSS. See paper I for the
explicit form of equations for ψi, i = 1, 6.
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3. Two-soliton solutions

3.1. Non-Abelian permutability theorem

To construct two-soliton solutions, it is possible to use the type-II BT with one-soliton solutions
as the starting solution. But technically, this method is difficult and complex. Here, we use
the type-I BT to calculate two-soliton solutions, which is an easy and simple method. This
method of using the type-I BT was applied to the matrix sine-Gordon theory in [10].

Let g1, �1 and g2, �2 be two sets of solutions of the linear equation with BT parameters
{M1(= −iδ1), η1} and {M2(= −iδ2), η2}, respectively. Then from the type-I BT (8), we can
see that �1 = (

λ + g−1
1 M1g0

)
�0, �2 = (

λ + g−1
2 M2g0

)
�0, where g0, �0 is a starting set of

solutions. If we apply the BT once more to the set (g1, �1) with δ = δ2 and also to the set
(g2, �2) with δ = δ1, and require that they result in the same solution, i.e. the final outcome
does not depend on the order of transformations, then we have

�g = (λ + g−1M2g1)
(
λ + g−1

1 M1g0
)
�0 = (λ + g−1M1g2)

(
λ + g−1

2 M2g0
)
�0. (35)

This is known as the non-Abelian permutability theorem, which gives rise to the following
‘nonlinear superposition’ principle [9, 10]:

g = (M2g1 − M1g2)g
−1
0

(
M2g

−1
2 − M1g

−1
1

)−1
. (36)

In particular, by choosing g1 and g2 to be one-soliton solutions, we can obtain a two-soliton
solution g by pure algebraic means.

Here we use the nonlinear superposition principle to obtain two-soliton solutions of the
HSS NLS–SIT system, starting from the trivial solution g0 = 1. For simplicity, we take the
BT parameters of each soliton as M1 = −M2 = −iδ and η1 = η2 = η. Then the superposition
principle in equation (36) gives

g = (2 cos η(P1 + P2) − 2 eiη)(2 cos η(P1 + P2) − 2 e−iη)−1, (37)

where P1 and P2 are projectors in equation (12) for each soliton. Explicitly,

P1 + P2 =(
P

(1)
k e�1 sech �1 + P

(2)
k e�2 sech �2 P (1)

m sech �1 eiX1 + P (2)
m sech �2 eiX2

P
(1)†
m sech �1 e−iX1 + P

(2)†
m sech �2 e−iX2 P̃

(1)
k e−�1 sech �1 + P̃

(2)
k e−�2 sech �2

)
,

(38)

where

X1 = −δ sin ηz − (δ2 cos 2η + α sin η/δ)z̄, X2 = δ sin ηz − (δ2 cos 2η − α sin η/δ)z̄,

�1 = −δ cos ηz + (δ2 sin 2η + α cos η/δ)z̄, �2 = δ cos ηz + (δ2 sin 2η − α cos η/δ)z̄.

(39)

P
(i)
k , and P (i)

m , i = 1, 2, are elements of projectors appearing in equation (12) for each soliton.
They satisfy equations (15) and (16). At this point, we note that the nature of the permutability
theorem requires that P (i)

m , i = 1, 2, commutes with each other.

3.2. Two-soliton of SU(4)

SU(2)×SU(2)×U(1)
HSS

Here we treat the case such that P (i)
m , i = 1, 2, belongs to the unitary type in equation (21).

Specifically, we take

P (i)
m = 1

2

(
cos θi sin θi

− sin θi cos θi

)
= 1

2
exp(−iθiσ2), i = 1, 2, (40)
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where σ2 is the 2 × 2 Pauli matrix, σ2 = ( 0
i

−i
0

)
. Equation (15) gives P

(i)
k = P̃

(i)
k = 1

2 . Then,
by inserting these expressions into equations (37) and (38), we can obtain

g =  + 4 sin2 η + 4i sin ηϒ

 − 4 sin2 η
, (41)

where  and ϒ are 4 × 4 matrices,

 = cos2 η{−2 − 2 tanh �1 tanh �2 − 2 sech �1 sech �2 cos(θ1 − θ2) cos(X1 − X2)}
+ 2 cos2 η sech �1 sech �2 sin(θ1 − θ2) sin(X1 − X2)I2 ⊗ σ2, (42)

and

ϒ= cos η(
( tanh �1 + tanh �2) ⊗ I2 sech �1 ei(θ1σ2+X1) + sech �2 ei(θ2σ2+X2)

sech �1 e−i(θ1σ2+X1) + sech �2 e−i(θ2σ2+X2) −( tanh �1 + tanh �2) ⊗ I2

)
.

(43)

Similarly,

g−1 =  + 4 sin2 η − 4i sin ηϒ

 − 4 sin2 η
. (44)

Inserting these expressions into the equation E = g−1∂g, we obtain the 2 × 2 matrix Em as

Em = 4iδ sin η cos η exp(iθ̄σ2 + iX̄)

×−i sinh(u + iη) cosh v sin(t + θσ2) + cosh(u + iη) sinh v cos(t + θσ2)

cosh 2u + sin2 η cosh 2v + cos2 η cos(2t + 2θσ2)
, (45)

where

t = −δ(sin η)z − α(sin η)z̄/δ, u = δ2(sin 2η)z̄, v = −δ(cos η)z + α(cos η)z̄/δ,

X̄ = −δ2(cos 2η)z̄, θ̄ = (θ1 + θ2)/2, θ = (θ1 − θ2)/2.

(46)

The solution in equation (45) reduces to the known simple form in [11] for the case of
SU(2)/U(1).

Similarly, the 4 × 4 matrix g can be written in terms of these variables as

g =
(

A B

C D

)
, (47)

where A,B,C,D are 2 × 2 matrices,

A = sin2 η cosh 2v − cos2 η cos(2t + 2θσ2) − cosh(2u − 2iθ)

cosh 2u + sin2 η cosh 2v + cos2 η cos(2t + 2θσ2)
, (48)

and

B = 2 sin 2η{sin(t + θσ2) sinh u sinh v + i cos(t + θσ2) cosh u cosh v} exp(iθ̄σ2 + iX̄)

cosh 2u + sin2 η cosh 2v + cos2 η cos(2t + 2θσ2)
. (49)

Explicit forms of C and D are not required and we omit here. Using all these results, we
explicitly check that they satisfy the equation of motion in equations (19) and (20). Figure 1
shows typical |ψi,j | and |gi,j |, which reveal two interacting solitons. The parameters used for
figure 1 are δ = α = 1, η = π/4, θ = π/8, θ̄ = 0.
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(a)
(b)

(c)
(d )

Figure 1. Intensity profiles (a) |ψ11|, (b) |ψ12|, (c) |g11|, (d) |g12| with parameters δ = α = 1,

η = π/4, θ = π/8, θ̄ = 0.

3.3. Two-soliton of Sp(2)

U(2)
HSS

Here we treat a case such that P (1)
m is of the unitary type in equation (21), while P (2)

m is of the
dyadic type in equation (29). Specifically, we take P (1)

m = 1
2I2 and

P (2)
m = 1

2

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
≡ 1

2
(1 − H), H ≡

(
sin2 θ −cos θ sin θ

− cos θ sin θ cos2 θ

)
,

(50)

with a real parameter θ . Equation (15) gives P
(i)
k = P̃

(i)
k = 1

2 , i = 1, 2. Note that H is a
projector, i.e., H 2 = H . By inserting these expressions into equations (37) and (38), we can
obtain

g = (1 − I2 ⊗ H)0 + 4i sin η cos ηI2 ⊗ H + 4 sin2 η + 4i sin ηϒ̂

(1 − I2 ⊗ H)0 − 4i sin η cos ηI2 ⊗ H − 4 sin2 η
, (51)

where ϒ̂ is a 4 × 4 matrix,

ϒ̂ = ϒ0 − cos η sech �2

(
e�2 eiX2

e−iX2 e−�2

)
⊗ H, (52)

and ϒ0 and 0 are obtained by taking θ1 = θ2 = 0 on ϒ and  in equations (43) and (42).
Similarly,

g−1 = (1 − I2 ⊗ H)0 − 4i sin η cos ηI2 ⊗ H + 4 sin2 η − 4i sin ηϒ̂

(1 − I2 ⊗ H)0 + 4i sin η cos ηI2 ⊗ H − 4 sin2 η
, (53)
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(a) (b)

(d )(c)

Figure 2. Intensity profiles (a) |ψ11|, (b) |ψ12|, (c) |g11|, (d) |g12| with parameters δ = α = 1,

η = π/4, θ = π/8.

Inserting these expressions into the equation E = g−1∂g, we obtain the 2 × 2 matrix Em:

Em = (1 − H)ψ0 + 2δ cos η
cosh(u − v)

cosh 2u + cosh 2v
eit+iX̄H, (54)

where ψ0 are obtained by taking θ̄ = θ = 0 on Em in equation (45) and t, u, v, X̄ are given
in equation (46). Using all these results, we explicitly check that they satisfy the equation of
motion in (28), as well as those for ψi, i = 2, 3.

Figure 2 shows typical |ψi,j | and |gi,j |, which show two interacting solitons. The
parameters used for figure 2 are δ = α = 1, η = π/4, θ = π/8.

3.4. Two-soliton of SO(8)

U(4)
HSS

As an example for constructing two-soliton solutions using equations (37) and (38), we take

P (1)
m =




0 1/12 1/6 0
−1/12 0 −√

79/24 1/8
−1/6

√
79/24 0 1/4

0 −1/8 −1/4 0


 ,

(55)

P (2)
m =




0 −1/4 1/8
√

79/24
1/4 0 0 1/6

−1/8 0 0 −1/12
−√

79/24 −1/6 1/12 0


 .
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Figure 3. Intensity profiles (a) |g11|, (b) |g12|, (c) |g16|, (d) |g17|, (e) |g18|, (f) |g22| with parameters
δ = α = 1, η = π/4. Pm are given in equation (55).

Note that P (1)
m and P (2)

m commute with each other, which is required when we use the
permutability theorem. In this case, it is difficult to obtain g analytically, because we need
to construct an 8 × 8 inverse matrix. Instead we proceed with the numerical method using
the software MATHEMATICA . Figure 3 shows typical |gi,j | of two interacting solitons.
The parameters used for figure 3 are δ = α = 1, η = π/4. These figures are drawn using
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MATHEMATICA, which is also used to check that the solutions in equations (37) and (38)
indeed satisfy the SIT–NLS equations in equations (3), (4) for DIII HSS.

4. Discussion

In this paper, we have constructed one- and two-soliton solutions of the multi-component
NLS–SIT systems associated with the Hermitian symmetric spaces. Two types of BT give
explicit methods to calculate solitons. We calculate optical pulses described by g−1∂g, as well
as the generalized polarization g−1T̄ g. A special condition on components of the projector is
given by equations (15) and (16) and solved for AIII, CI and DIII HSSs.

The construction of two-solitons was conducted using the non-Abelian permutability
theorem [1, 9]. Due to the intrinsic nature of the theorem, it requires the commutability
between two P (i)

m , i = 1, 2, in equation (38). Construction of more general two-soliton
solutions without the above limitation requires a generalized version of Crum’s formula,
which is not accomplished yet.

Our formalism can be easily extended to describe SIT-higher derivative NLS systems
where propagating pulses are very short or highly intensive. In this respect, the higher
derivative NLS systems associated with the HSS developed in [6] are interesting. This can
generalize the work on the SIT-higher derivative NLS systems [12] to the multi-component
case.

Another interesting development would be the construction of multi-component solitons
lying on a continuous wave background [13] and/or cnoidal wave background [14]. In the
simplest case of SU(N)/(SU(N − 1) × U(1)), it showed interesting behaviours such as
soliton fusion and/or soliton fission. General HSS solitons lying on backgrounds could result
in nontrivial behaviour including cloaning, etc.

Finally, the stability analysis of the obtained solutions should be interesting. There exist
various methods for analysing the stability of the NLS systems, which can be suitably extended
and used for the system of the present paper [15].
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